H(t)=-18t^2+99t

Simple and best practice solution for H(t)=-18t^2+99t equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H(t)=-18t^2+99t equation:



(H)=-18H^2+99H
We move all terms to the left:
(H)-(-18H^2+99H)=0
We get rid of parentheses
18H^2-99H+H=0
We add all the numbers together, and all the variables
18H^2-98H=0
a = 18; b = -98; c = 0;
Δ = b2-4ac
Δ = -982-4·18·0
Δ = 9604
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{9604}=98$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-98)-98}{2*18}=\frac{0}{36} =0 $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-98)+98}{2*18}=\frac{196}{36} =5+4/9 $

See similar equations:

| 5(a-5)-1/2(2a+6)=4 | | (1)/(4)c+2=(3)/(4) | | 2(3x+2.5=17 | | 0=-4.9x2+30x+3 | | (-x-4)-(4x-2+3)=-(6x-8)+(2x-4+3) | | 42/35=35/c | | 12x+12=27.57 | | 7/2+20+10=x | | 2.5x+85=100 | | -9/4x=-1/7 | | -(3/14)/x=1/7 | | -1,6x=-6,4 | | 0,8x=-3,2 | | 0,8x=3,2x | | 0,8x=-3,2x | | y/4-8=-7 | | 2/3x−4=10x= | | 2v-6=-6 | | -11=-2x-1 | | 8+r/2=-4 | | 3/5x=9x= | | -2/9x+22=-22 | | .2.5x=10x= | | 1+2/q=1 | | -3.6x-3=-3.1x+5 | | -10=-3y+5.8 | | 6+r=-6 | | h+6=4 | | w/7=42 | | RxR+R=20 | | 2xF=10 | | /2^{x-1}=31 |

Equations solver categories